References

A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge

Lea Frermann Ivan Titov Manfred Pinkal

April, 28th 2014

Contents

- 2 Technical Background
- 3 The Script Model
- ④ Evaluation & Results

[...] A script is a predetermined, stereotyped sequence of actions that define a well-known situation. 1

¹Schank and Abelson (1975)

 $[\dots]$ A script is a predetermined, stereotyped sequence of actions that define a well-known situation.¹

Example situation: "Eating in a Restaurant"

Look at menu				
Order your food				
Wait for your food				
Eat food				
Pay				

Event Sequence Description (ESD): explicit instantiation of a script

¹Schank and Abelson (1975)

 $[\ldots]$ A script is a predetermined, stereotyped sequence of actions that define a well-known situation.^1

Example situation: "Eating in a Restaurant"

Look at menu			
Order your food			
Wait for your food			
Eat food			
Pay			

a way of providing AI/NLP systems with world knowledge

- coherence estimation
- summarization

onclusion Referer

Script Characteristics

ESD 1	ESD 2	
Look at menu	Check the menu	
Order your food	Order the meal	
Wait for your food	Wait for meal	
	Talk to friends	
Eat food	Have meal	
Pay	Pay the bill	
Order your food Wait for your food Eat food Pay	Order the meal Wait for meal Talk to friends Have meal Pay the bill	

learn sequential ordering constraints

onclusion References

Script Characteristics

ESD 2	
Check the menu	
Order the meal	
Wait for meal	
Talk to friends	
Have meal	
Pay the bill	

learn sequential ordering constraints

learn event types (paraphrases)

Conclusion References

Script Characteristics

ESD 1	ESD 2	
Look at menu	Check the menu	
Order your food	Order the meal	
Wait for your food	Wait for meal	
	Talk to friends	
Eat food	Have meal	
Pay	Pay the bill	

learn sequential ordering constraints

learn event types (paraphrases)

model participant types as latent variables

References

Event Sequence Descriptions (ESDs)

- from non-expert annotators (web experiments)
- noisy (grammar/spelling)
- variable number and detail of event descriptions
- few ESDs per scenario

" get menucard" " search for items" " order items" " eat items" " pay the bill" " quit restaurant" "enter the front door" "let hostess seat you" "tell waitress your drink order" "tell waitress your food order" "wait for food" "eat and drink" "get check from waitress" "give waitress credit card" "take charge slip from waitress" "sign slip and add in a tip" "leave slip on table" "put up credit card" "exit the restaurant"

Unsupervised Learning of Scripts from Natural Text

Chambers and Jurafsky (2008)

- infer script-like templates from news text ("Narrative Chains")
- learn event sets and ordering information in a 3-step process
 - identification of relevant events
 - temporal classification
 - clustering
- Chambers and Jurafsky (2009) learn events and participants jointly (but no ordering)
- script information often left implicit in natural text (world knowledge)

Unsupervised Learning of Scripts from ESDs

Regneri et al 2010

- collect sets of event sequence description for various scripts
- learn event types and orderings
 - align events across descriptions based on semantic similarity
 - compute graph representation using Multiple Sequence Alignment (MSA)
- Regneri et al. (2011) learn participant types based on those event graphs
- pipeline architecture
- MSA-based graphs cannot encode some script characteristics (e.g. event optionality)

The Proposed Model

(I) A Bayesian Script Model

- joint learning of event types and ordering constraints from ESDs
- generalized Mallows Model for modeling ordering constraints

Bayesian Models of Ordering in NLP

- document-level ordering constraints in structured text (Wikipedia Articles) (Chen et al., 2009)
- integrate a GMM into a standard topic model

Conclusion References

The Proposed Model

(II) Informed Prior Knowledge from WordNet

- alleviates the problem of limited training data
- encode correlations between words based on WordNet similarity in the language model priors

Encoding Correlations through a logistic normal distribution

• "The correlated topic model" Blei and Lafferty (2006)

Conclusion Ref

References

Contents

- 2 Technical Background
- 3 The Script Model
- ④ Evaluation & Results

The Mallows Model (Mallows, 1957)

A probability distribution over permutations of items

- distance measure between two permutations π_1 and π_2 : $d(\pi_1, \pi_2)$
- parameters:
 - $\sigma,$ the canonical ordering (identity ordering [1,2,3,...,n])
 - $\rho>$ 0, a dispersion parameter (\approx distance penalty)

The probability of an observed permutation $\boldsymbol{\pi}$

$$P(\pi;
ho, \sigma) = rac{e^{-
ho*d(\pi, \sigma)}}{\psi(
ho)}$$

The Generalized Mallows Model (Fligner and Verducci, 1986)

Generalization to item-specific dispersion parameters $\rho = [\rho_1, \rho_2, ...]$ for items in $\pi = [\pi_1, \pi_2, ...]$ $GMM(\pi; \rho, \sigma) \propto e^{-\sum_i -\rho_i d(\pi_i, \sigma_i)}$ $\propto \prod e^{-\rho_i d(\pi_i, \sigma_i)}$

Relation to our model

- items $(\pi_i) \triangleq$ event types
- model event type-specific temporal flexibility

Conclusion Re

References

Contents

- 2 Technical Background
- 3 The Script Model
- 4 Evaluation & Results

onclusion Referen

Generative Story I: Ordering Generation

onclusion References

Generative Story I: Ordering Generation

draw an event type permutation π

COOKING PASTA π 1 get
3 boil
4 put
7 wait
2 grate
5 add
6 drain

Conjugate prior (GMM₀)

onclusion References

Generative Story II: Event Type Generation

realize event type e with success probability θ^e

for esd d do

 $egin{array}{ll} \pi \sim {\it GMM}(oldsymbol{
ho},oldsymbol{
u}) \ {f t}: t_e \sim {\it Binomial}(heta^e) \end{array}$

COOKING PASTA π
1 get
3 boil
4 put
7 wait
2 grate
5 add
6 drain

Conjugate prior (*Beta*)

onclusion References

Generative Story II: Event Type Generation

Conjugate prior (*Beta*)

onclusion Referen

Generative Story III: Participant Type Generation

for each event $e \in \mathbf{t}$, realize participant type p with success probability φ_p^e

U _{get}	pasta water cheese pot salt stove strainer
U _{put}	pasta water cheese pot salt stove strainer
 U _{drain}	pasta water cheese pot salt stove strainer

onclusion Referen

Generative Story III: Participant Type Generation

for each event $e \in \mathbf{t}$, realize participant type p with success probability φ_p^e

C	OOKIN	g Pasta
t		u
1	get	pot
3	boil	water
4	put	pasta
2	grate	cheese
6	drain	water, pot
_		

U _{get}	pasta water cheese pot salt stove strainer
U _{put}	pasta water cheese pot salt stove strainer
 U _{drain}	pasta water cheese pot saft stove strainer

Generative Story IV: Lexical Realization

draw a lexical realizations for each realized event and participant

```
for esd d do
```

 $\begin{aligned} \pi &\sim GMM(\rho,\nu) \\ \mathbf{t} : t_e &\sim Binomial(\theta^e) \\ \text{for event } e &\in \mathbf{t} \\ \mathbf{u}_e : u_e^p &\sim Binomial(\varphi_p^e) \\ \text{for } e &\in \mathbf{t} \text{ do} \\ w_e &\sim Mult(\vartheta_e) \\ \text{for } p &\in \mathbf{u}_e \text{ do} \\ w_p &\sim Mult(\varpi_p) \end{aligned}$

C	OOKIN	g Pasta
t		u
1	get	pot
3	boil	water
4	put	pasta
2	grate	cheese
6	drain	water, pot

Conclusion References

Generative Story IV: Lexical Realization

draw a lexical realizations for each realized event and participant

```
for esd d do
```

 $\begin{aligned} \pi &\sim GMM(\rho,\nu) \\ \mathbf{t} : t_e &\sim Binomial(\theta^e) \\ \text{for event } e &\in \mathbf{t} \\ \mathbf{u}_e : u_e^p &\sim Binomial(\varphi_p^e) \\ \text{for } e &\in \mathbf{t} \text{ do} \\ w_e &\sim Mult(\vartheta_e) \\ \text{for } p &\in \mathbf{u}_e \text{ do} \\ w_p &\sim Mult(\varpi_p) \end{aligned}$

COOKING PASTA

"fetch	saucepan"
"boil	water"
"add	noodles''
"grate	cheese "
" drain	water from pot "

Generative Story IV: Lexical Realization

draw a lexical realizations for each realized event and participant

```
for esd d do
```

 $\begin{aligned} \pi &\sim GMM(\rho,\nu) \\ \mathbf{t} : t_e &\sim Binomial(\theta^e) \\ \text{for event } e &\in \mathbf{t} \\ \mathbf{u}_e : u_e^p &\sim Binomial(\varphi_p^e) \\ \text{for } e &\in \mathbf{t} \text{ do} \\ w_e &\sim Mult(\vartheta_e) \\ \text{for } p &\in \mathbf{u}_e \text{ do} \\ w_p &\sim Mult(\varpi_p) \end{aligned}$

COOKING PASTA

"fetch	saucepan"
"boil	water"
"add	noodles"
"grate	cheese "
" drain	water from pot "

Informed asymmetric Dirichlet priors

Informed Asymmetric Dirichlet Priors

Tie together the prior values ("pseudo counts") of semantically related words

Multivariate Normal $\mathcal{N}(0, \Sigma)$

Conclusion Refer

Informed Asymmetric Dirichlet Priors

Tie together the prior values ("pseudo counts") of semantically related words

*	saucepan	pot	cheese	noodles	pasta
saucepan	7	6	1	0	1
pot	6	12	0	0	1
cheese	1	0	13	3	3
noodles	0	0	3	7	5
pasta	1	1	3	5	6

Informed Asymmetric Dirichlet Priors

Tie together the prior values ("pseudo counts") of semantically related words

 $oldsymbol{\delta} \sim \mathcal{N}(0, \Sigma) \qquad \phi \sim \textit{Dirichlet}(oldsymbol{\delta}) \qquad w \sim \textit{Multinomial}(\phi)$

Collapsed Gibbs Sampling for approximate inference Slice Sampling for continuous distributions *GMM* and $\mathcal{N}(0, \Sigma)$

Parameters to be estimated (after collapsing)

- latent ESD labels $\mathbf{z} = \{\mathbf{t}, \mathbf{u}, \boldsymbol{\pi}\}$
- GMM dispersion parameter ho
- language model parameters $\delta_{(\textit{partic})}, \gamma_{(\textit{event})}$

Contents

- 2 Technical Background
- 3 The Script Model
- 4 Evaluation & Results

Data I

Collection of ESDs (Regneri et al., 2010)

- sets of explicit descriptions of event sequences
- created from non-experts via web experiments

Scenario Name	#ESDs	Avg
Answer the telephone	55	4.47
Buy from vending machine	32	4.53
Make scrambled eggs	20	10.3
Eat in fast food restaurant	15	8.93
Take a shower	21	11.29

- test set (10 scenarios)
- separate development set (5 scenarios)

Evaluation Setup (Regneri et al., 2010)

Binary event paraphrase classification

- [get pot , fetch saucepan] \Rightarrow true
- [add pasta , add water] \Rightarrow false

Binary follow-up classification

- [fetch pot, put pasta into pot] \Rightarrow true
- [put pasta into pot , fetch pot] \Rightarrow false

Metric

$$precision = \frac{true_{system} \cap true_{gold}}{true_{system}}$$
$$recall = \frac{true_{system} \cap true_{gold}}{true_{gold}} \qquad F = \frac{2 * precision * recall}{precision + recall}$$

Conclusion Reference

The Event Paraphrase Task

Evaluation & Results

Conclusion Referen

The Event Ordering Task

Evaluation & Results

Conclusion Reference

Influence of Model Components

Evaluation & Results

Conclusion Referen

Influence of Model Components

20 / 22

Conclusion Refere

Induced Clustering

Cooking food in the microwave

$$\{get\} \rightarrow \{open,take\} \rightarrow \{put,place\} \rightarrow \{close\}$$
$$\rightarrow \{set,select,enter,turn\} \rightarrow \{start\} \rightarrow \{wait\}$$
$$\rightarrow \{remove,take,open\} \rightarrow \{push,press,turn\}$$

Contents

- 2 Technical Background
- 3 The Script Model
- ④ Evaluation & Results

A hierarchical Bayesian Script model

- joint model of event types and ordering constraints
- competitive performance with a recent pipeline-based model
- inclusion of word similarity knowledge as correlations in the language model priors
- explicitly target apparent script characteristics (event optionality, event type-specific temporal flexibility)
- GMM as an effective model for event ordering constraints

A hierarchical Bayesian Script model

- joint model of event types and ordering constraints
- competitive performance with a recent pipeline-based model
- inclusion of word similarity knowledge as correlations in the language model priors
- explicitly target apparent script characteristics (event optionality, event type-specific temporal flexibility)
- GMM as an effective model for event ordering constraints

Thank you!

- A. Barr and E.A. Feigenbaum. 1986. The handbook of artificial intelligence. 1 (1981). The Handbook of Artificial Intelligence. Addison-Wesley.
- D. Blei and J. Lafferty. 2006. Correlated topic models. In
 Y. Weiss, B. Schölkopf, and J. Platt, editors, *Advances in Neural Information Processing Systems 18*, pages 147–154. MIT Press, Cambridge, MA.
- N. Chambers and D. Jurafsky. 2008. Unsupervised learning of narrative event chains. In *Proceedings of ACL-08: HLT*, pages 789–797. Association for Computational Linguistics, Columbus, Ohio.

- N. Chambers and D. Jurafsky. 2009. Unsupervised learning of narrative schemas and their participants. In *Proceedings of ACL-09 and the 4th International Joint Conference on Natural Language Processing of the AFNLP*, pages 602–610. Association for Computational Linguistics, Stroudsburg, PA, USA.
- H. Chen, S. R. K. Branavan, R. Barzilay, and D. R. Karger. 2009. Content modeling using latent permutations. J. Artif. Int. Res., 36(1):129–163.
- M. Fligner and J. Verducci. 1986. Distance based ranking models. *Journal of the Royal Statistical Society, Series B*, 48:359–369.
- C. L. Mallows. 1957. Non-null ranking models. *Biometrika*, 44:114–130.

- M. Regneri, A. Koller, and M. Pinkal. 2010. Learning script knowledge with web experiments. In *Proceedings of ACL 2010*. Association for Computational Linguistics, Uppsala, Sweden.
- M. Regneri, A. Koller, J. Ruppenhofer, and M. Pinkal. 2011. Learning script participants from unlabeled data. In *Proceedings* of *RANLP 2011*. Hissar, Bulgaria.
- R. C. Schank and R. P. Abelson. 1975. Scripts, plans and knowledge. In PN Johnson-Laird and PC Wason, editors, *Thinking: Readings in Cognitive Science, Proceedings of the Fourth International Joint Conference on Artificial Intelligence*, pages 151–157.