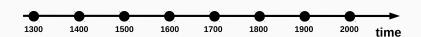
A Bayesian Model of Diachronic Meaning Change

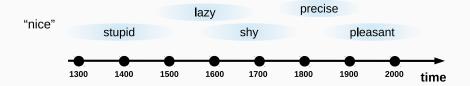
Lea Frermann and Mirella Lapata

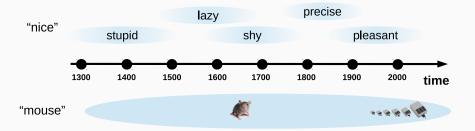
Institute for Language, Cognition, and Computation School of Informatics The University of Edinburgh

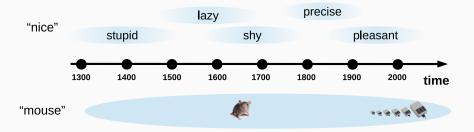
lea@frermann.de
www.frermann.de

ACL, August 09, 2016









Meaning changes **smoothly** (in written language, across societies)

Can we understand, model, and predict change?

- aid historical sociolinguistic research
- improve historical text mining and information retrieval

Can we build task-agnostic models?

- learn time-specific meaning representations which
- are interpretable and
- are useful across tasks

SCAN: A Dynamic Model of Sense Change

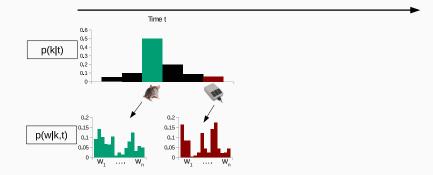
Model Assumptions

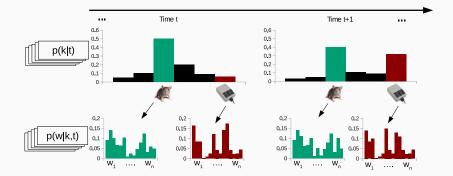
- target word (e.g., *mouse*)
- target word-specific corpus

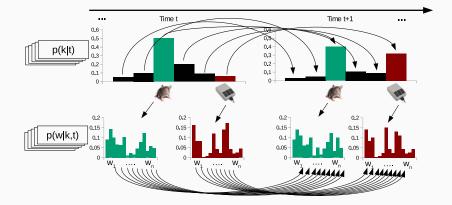
year	text snippet		
1749	fortitude time woman shrieks	mouse	rat capable poisoning husband
1915	rabbit lived hole small grey	mouse	made nest pocket coat
1993	moved fire messages click computer	mouse	communications appear electronic bulletin
2009	scooted chair clicking button wireless	mouse	hibernate computer stealthy exit

- number of word senses (*K*)
- granularity of temporal intervals (ΔT) (e.g., a year, decade, or century)

Time 1	Time 2	 Time t	Time t+1	 Time T

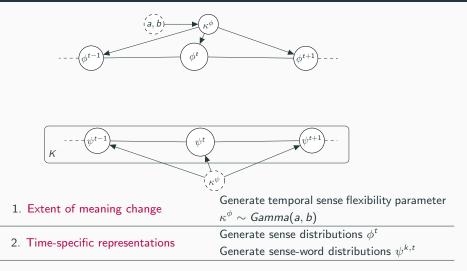


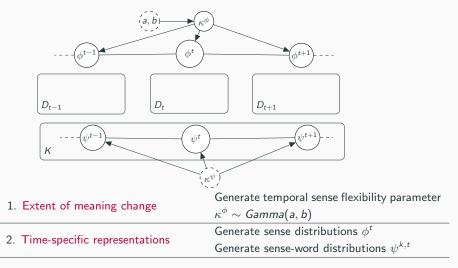




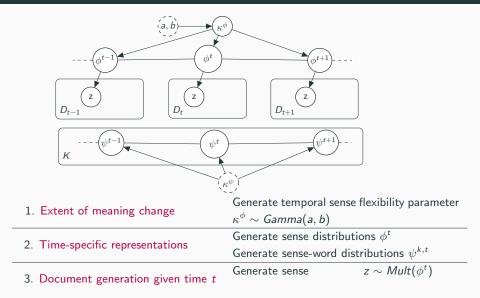
1. Extent of meaning change

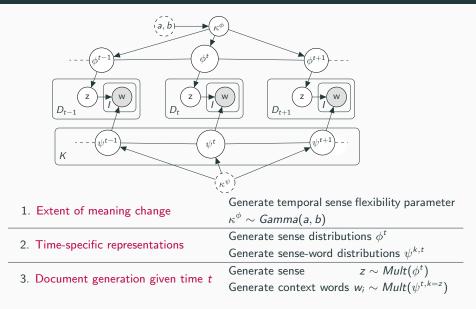
Generate temporal sense flexibility parameter $\kappa^{\phi} \sim \textit{Gamma}(a,b)$





3. Document generation given time t





First-order random walk model

intrinsic Gaussian Markov Random Field (Rue, 2005; Mimno, 2009)

$$\phi^1$$
 - - - ϕ^{t-1} ϕ^t ϕ^{t+1} - - - ϕ^T

draw local changes from a normal distribution

mean temporally neighboring parameters variance meaning flexibility parameter κ^{ϕ}

Blocked Gibbs sampling

Details in the paper...

Related Work

Related work

Word meaning change

Gulordava (2011), Popescu (2013), Kim (2014), Kulkarni (2015)

Word	Neighboring Words in		
woru	1900	2009	
	cheerful	lesbian	
gay	pleasant	bisexual	
	brilliant	lesbians	

- X word-level meaning
- X two time intervals
- X representations are independent
- ✓ knowledge-lean

Related work

Word meaning change

Gulordava (2011), Popescu (2013), Kim (2014), Kulkarni (2015)

Word	Neighboring Words in		
woru	1900	2009	
	cheerful	lesbian	
gay	pleasant	bisexual	
	brilliant	lesbians	

- X word-level meaning
- X two time intervals
- X representations are independent
- $\checkmark\,$ knowledge-lean

Graph-based tracking of word sense change

Mitra (2014, 2015)

- ✓ sense-level meaning
- \checkmark multiple time intervals
- $\pmb{\mathsf{X}}$ representations are independent
- X knowledge-heavy

Evaluation

x no gold standard test set or benchmark corpora*x* small-scale evaluation with hand-picked test examples

DATE: DiAchronic TExt Corpus (years 1710 – 2010)

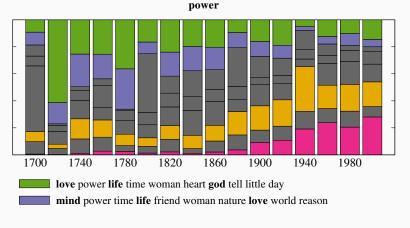
- 1. COHA Corpus (Davies, 2010)
- 2. SemEval DTE Task Training Data (Popescu, 2015)
- 3. parts of the CLMET3.0 corpus (Diller, 2011)

- $\pmb{\mathsf{X}}$ no gold standard test set or benchmark corpora
- $\pmb{\varkappa}$ small-scale evaluation with hand-picked test examples

We evaluate on various previously proposed tasks and metrics

- 1. qualitative evaluation
- 2. perceived word novelty (Gulordava, 2011)
- 3. temporal text classification SemEval DTE (Popescu, 2015)
- 4. usefulness of temporal dynamics
- 5. novel word sense detection (Mitra, 2014)

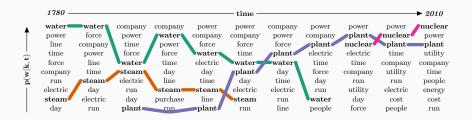
1. Qualitative Evaluation



power country government nation war increase world political people europe

power time company water force line electric plant day run

1. Qualitative Evaluation



2. Human-perceived Word Meaning Change (Gulordava (2011))

Task: Rank 100 target words by meaning change.

How much did $\begin{cases} baseball \\ network \\ ... \end{cases}$ change between the 1960s and the 1990s?

4-point scale 0: no change ... 3: significant change

2. Human-perceived Word Meaning Change (Gulordava (2011))

Task: Rank 100 target words by meaning change.

How much did $\begin{cases} baseball \\ network \\ ... \end{cases}$ change between the 1960s and the 1990s?

4-point scale 0: no change ... 3: significant change

Gulordava (2011)'s system

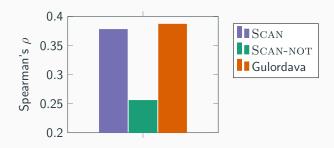
- Compute word vectors from time-specific corpora (shared space): w^{1960} , w^{1990}
- Compute *cosine*(*w*¹⁹⁶⁰, *w*¹⁹⁹⁰)
- $\bullet\,$ Rank words by cosine: greater angle \rightarrow greater meaning change

2. Human-perceived Word Meaning Change (Gulordava (2011))

Task: Rank 100 target words by meaning change.

How much did $\begin{cases} baseball \\ network \\ ... \end{cases}$ change between the 1960s and the 1990s?

4-point scale 0: no change ... 3: significant change



3. Diachronic Text Evaluation (DTE) (SemEval, 2015)

Task: predict the time frame of origin of a given text snippet

President de Gaulle favors an independent European nuclear striking force [...] (1962)

Prediction granularity

fine	2-year intervals	{1700-1702,, 1961-1963,, 2012-2014}
medium	6-year intervals	$\{1699-1706,, 1959-1965,, 2008-2014\}$
coarse	12-year intervals	$\{16961708, , 19561968, , 20082020\}$

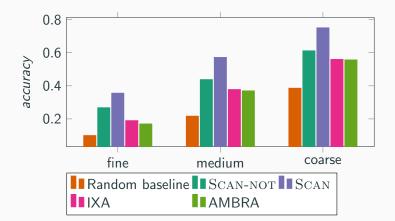
3. Diachronic Text Evaluation (DTE) (SemEval, 2015)

SCAN temporal word representations

- 883 nouns and verbs from the DTE development dataset
- $\Delta T = 5$ years
- K = 8 senses

 \rightarrow predict time of a test snippet using $\rm SCAN$ representations

3. Diachronic Text Evaluation (DTE) (SemEval, 2015)



accuracy: precision measure discounted by distance from true time

A dynamic Bayesian model of diachronic meaning change

- \checkmark sense-level meaning change
- \checkmark arbitrary time spans and intervals
- ✓ knowledge lean
- $\checkmark\,$ explicit model of smooth temporal dynamics

A dynamic Bayesian model of diachronic meaning change

- ✓ sense-level meaning change
- \checkmark arbitrary time spans and intervals
- ✓ knowledge lean
- ✓ explicit model of smooth temporal dynamics

Future Work

- *learn* the number of word senses (non-parametric)
- model short term opinion change from twitter data

Thank you!

lea@frermann.de www.frermann.de

References I

Blocked Gibbs sampling with three components

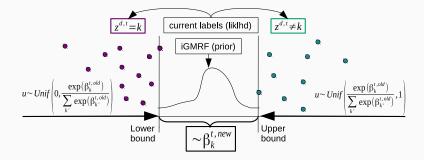
Block 2 Time-specific sense prevalence parameters $\{\phi\}^T$ Time- and sense-specific word parameters $\{\psi\}^{T \times K}$

Block 3 Degree of temporal sense flexibility κ^{ϕ}

Learning

Block 2 Word- / sense parameters $\{\phi\}^T$ and $\{\psi\}^{T \times K}$

- Logistic Normal is not conjugate to Multinomial \rightarrow ugly math!
- auxiliary variable method (Mimno et al, 2008)
- resample each ϕ_k^t (and $\psi_w^{t,k}$) from a weighted, bounded area



DATE: Diachronic Text Corpus

- 1. The COHA Corpus (Davies, 2010)
 - large collection of text from various genres
 - years 1810 2009
 - 142,587,656 words
- 2. The SemEval DTE Task Training Data (Popescu, 2015)
 - news text snippets
 - years 1700 2010
 - 124,771 words
- 3. Parts of the CLMET3.0 corpus (Diller, 2011)
 - texts of various genres from open online archives
 - use years 1710–1810
 - 4,531,505 words

Task: Given a word, predict its novelty in a focus time (1990s) compared to a reference time (1960s).

Task: Given a word, predict its novelty in a focus time (1990s) compared to a reference time (1960s).

A gold test set of 100 target words

- how much did w's meaning change between the 1960s and 1990s?
- ratings on a 4-point scale

[0=no change, ..., 3=change significantly]

orange $\rightarrow 0$	$crisis \to 2$	$net\to 3$
sleep $ ightarrow$ 0	$virus \to 2$	program $ ightarrow$ 3
	•••	• • •

Gulordava et al's system

- vector space model
- data: the Google Books bigram corpus
- compute a novelty score based on similarity of word vectors low similarity \rightarrow significant change

Scan

- data: DATE subcorpus covering 1960 1999 ; $\Delta T = 10, K = 8$
- we measure word novelty using the relevance score (Cook, 2014)
 - compute sense novelty based on time-specific *keyword* probabilities (Kilgarriff, 2000)
 - word novelty = max sense novelty

Performance

system	corpus	Spearman's ρ
Gulordava (2011)	Google	0.386
Scan	Date	0.377
Scan-not	Date	0.255
frequency baseline	Date	0.325

SCAN predictions: Most novel words w/ most novel sense (1960s vs 1990s)

environmental	supra note law protection id agency impact policy factor
users	computer window information software system wireless web
virtual	reality virtual computer center experience week community
disk	hard disk drive program computer file store ram business

3. Diachronic Text Evaluation (DTE) (SemEval, 2015)

Task: predict the time frame of origin of a given text snippet

subtask 1 – explicit cues

```
President de Gaulle favors an independent European nuclear
striking force [...] (1962)
```

Prediction granularity

fine	2-year	$\{1700-1702, 1703-1705,, 1961-1963,, 2012-2014\}$
medium	6-year	$\{1699-1706,\ 1707-1713,\ 1959-1965,\ 2008-2014\}$
coarse	12-year	$\{1696-1708, 1709-1721,, 1956-1968,, 2008-2020\}$

3. Diachronic Text Evaluation (DTE) (SemEval, 2015)

Task: predict the time frame of origin of a given text snippet

subtask 2 - implicit (language) cues

The local wheat market was not quite so strong to-day as yesterday. (1891)

Prediction granularity

fine	6-year	$\{1699-1705, 1706-1712,, 1888-1894,, 2007-2013\}$
medium	12-year	$\{1703-1715,\ 1716-1728,\ 1885-1897,\ 2002-2014\}$
coarse	20-year	$\{1692-1712, 1713-1733,, 1881-1901,, 2007-2027\}$

SCAN

learn temporal word representations

- for all nouns and for all verbs that occur at least twice in the DTE development dataset (883 words)
- $\Delta T = 5$ years , K = 8

SCAN

learn temporal word representations

- for all nouns and for all verbs that occur at least twice in the DTE development dataset (883 words)
- $\Delta T = 5$ years , K = 8

Predicting time of a test news snippet

- 1. Detect mentions of target words $\{c\}$; for each target
 - 1.1 construct document with c and ± 5 surrounding words ${\bf w}$
 - 1.2 compute distribution over time slices :

 $p^{(c)}(t|\mathbf{w}) \propto p^{(c)}(\mathbf{w}|t) imes p^{(c)}(t)$

- 2. combine target-wise predictions into final distribution
- 3. predict time t with highest probability

SCAN

learn temporal word representations

- for all nouns and for all verbs that occur at least twice in the DTE development dataset (883 words)
- $\Delta T = 5$ years , K = 8

Supervised Classification – Multiclass SVM

- SVM SCAN
 - 1. $\arg \max_{k} p^{(c)}(k|t)$ (most likely sense from SCAN models)
- SVM SCAN+n-gram
 - 1. $\arg \max_k p^{(c)}(k|t)$ (most likely sense from SCAN models)
 - 2. character n-grams

	Subtask 1 – factual cues					
	2 yr	бyr	12 yr	бyr	12 yr	20 yr
Baseline	.097	.214	.383	.199	.343	.499
Scan-not	.265	.435	.609	.259	.403	.567
Scan	.353	.569	.748	.376	.572	.719
IXA	.187	.375	.557	.261	.428	.622
AMBRA	.167	.367	.554	.605	.767	.868
UCD	-	-	-	.759	.846	.910
SVM Scan	.192	.417	.545	.573	.667	.790
$SVM~SCAN{+}ngram$.222	.467	.627	.747	.821	.897

Scores: *accuracy* – precision measure discounted by distance from true time

	Subtask 2 – linguistic cues					
	2 yr	бyr	12 yr	бyr	12 yr	20 yr
Baseline	.097	.214	.383	.199	.343	.499
Scan-not		.435	.609	.259	.403	.567
Scan	.353	.569	.748	.376	.572	.719
IXA	.187	.375	.557	.261	.428	.622
AMBRA		.367	.554	.605	.767	.868
UCD		—		.759	.846	.910
SVM SCAN	.192	.417	.545	.573	.667	.790
$SVM~SCAN{+}ngram$.222	.467	.627	.747	.821	.897

Scores: *accuracy* – precision measure discounted by distance from true time

3. Diachronic Text Evaluation (DTE) (SemEval, 2015)

	Subtask 1			Subtask 2			
	2 yr	бyr	12 yr	бyr	12 yr	20 yr	
Baseline	.097	.214	.383	.199	.343	.499	
Scan-not	.265	.435	.609	.259	.403	.567	
Scan	.353	.569	.748	.376	.572	.719	
IXA	.187	.375	.557	.261	.428	.622	
AMBRA	.167	.367	.554	.605	.767	.868	
UCD	-	_	-	.759	.846	.910	
SVM SCAN	.192	.417	.545	.573	.667	.790	
$SVM~SCAN{+}ngram$.222	.467	.627	.747	.821	.897	

Discussion \rightarrow did we just use more data? (no)

 \rightarrow our system is not application specific

 \rightarrow use different systems for different DTE subtasks